On spontaneous imbalance and ocean turbulence: generalizations of the Paparella–Young epsilon theorem
نویسنده
چکیده
Recent progress in understanding the balance–imbalance problem is highlighted, with emphasis on spontaneous-imbalance phenomena associated with the exponentially fast “wave capture” of inertia–gravity waves. These phenomena are excluded from shallow-water models and are outside the scope of the classical Lighthill theory. Also discussed is progress on a different topic, an effort to extend the Paparella–Young epsilon theorem to realistic ocean models. The theorem constrains turbulent dissipation rates ε in horizontal-convection thought-experiments, in which mechanically-driven stirring is switched off. The theorem bears on the so-called “ocean heat engine” and “ocean desert” controversies. The original theorem (2002) applied only to very idealized ocean models. Several restrictions on the original proof can now be lifted including the restriction to a linear, thermalonly equation of state. The theorem can now be proved for fairly realistic equations of state that include thermobaric effects, and nonlinearity in both temperature and salinity. The restriction to Boussinesq flow can also be lifted. The increased realism comes at some cost in terms of weakening the bound on ε. The bound is further weakened if one allows for the finite depth of penetration of solar radiation. This is collaborative work with Francesco Paparella and William Young. To appear in Turbulence in the Atmosphere and Oceans (Proc. International IUTAM/Newton Inst. Workshop held 8–12 December 2008), ed. D. G. Dritschel, Springer-Verlag. Final version in press
منابع مشابه
The Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملSome generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کاملمدلسازی عددی جریانهای لایهبندی شدهی غیرهمسان با استفاده از مدل آشفتگی صریح جبری تنش رینولدز
Flows of natural hydro-environments are usually turbulent and mostly stratified, like the flows in lakes, reservoirs, estuaries and atmosphere to name a few. In stratified flows due to the buoyancy forces, the turbulent stresses are usually non-isotropic. Therefore the accuracy of the numerical simulations for such flows is highly dependent on the turbulence model and the implementation of non-...
متن کاملON THE SYSTEM OF LEVEL-ELEMENTS INDUCED BY AN L-SUBSET
This paper focuses on the relationship between an $L$-subset and the system of level-elements induced by it, where the underlying lattice $L$ is a complete residuated lattice and the domain set of $L$-subset is an $L$-partially ordered set $(X,P)$. Firstly, we obtain the sufficient and necessary condition that an $L$-subset is represented by its system of level-elements. Then, a new representat...
متن کاملON ($epsilon, epsilon vee q$)-FUZZY IDEALS OF BCI-ALGEBRAS
The aim of this paper is to introduce the notions of ($epsilon, epsilon vee q$)-fuzzy p-ideals, ($epsilon, epsilon vee q$)-fuzzy q-ideals and ($epsilon, epsilon vee q$)-fuzzy a-ideals in BCIalgebras and to investigate some of their properties. Several characterizationtheorems for these generalized fuzzy ideals are proved and the relationshipamong these generalized fuzzy ideals of BCI-algebras i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009